A study of relationships between state-of-mix, rheological properties, dynamic properties, and bound rubber content

Author(s):  
C. Sirisinha ◽  
W. Sittichokchuchai
2014 ◽  
Vol 554 ◽  
pp. 71-75 ◽  
Author(s):  
Afnan Aiman Rohadi ◽  
Abdul Razak Rahmat ◽  
Mazlina Mustafa Kamal

Reinforcement of rubber by precipitated silica is adversely affected due to lack of strong polymer silica bonding. Functionalized polymers interact strongly with surface silanol groups of precipitated silica. In this work, effect of variation of epoxide content in silica filled Epoxidized Natural Rubber (ENR) compound was studied namely ENR 10, 25, 37.5 and 50mol%. Increasing in epoxide level of rubber has contributed to better rubber filler interaction and lead to better mechanical properties. Meanwhile, ENR’s with greater degree of polarity has contributed significantly to higher storage moduli at small deformation and also leads to increase in bound rubber content value. Fourier transform infrared spectroscopy studies showed that the silanol groups in silica interact with ENR through formation of Si-OH bond.


2021 ◽  
Vol 692 (2) ◽  
pp. 022019
Author(s):  
Weina Bi ◽  
Yu Guangshui ◽  
Jujie Sun ◽  
Christoph Goegelein ◽  
Martin Hoch ◽  
...  

Materials ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4120 ◽  
Author(s):  
Mingfeng Chang ◽  
Yixing Zhang ◽  
Jianzhong Pei ◽  
Jiupeng Zhang ◽  
Min Wang ◽  
...  

Asphalt rubbers mixed with untreated and plasticized crumb rubbers and a compounding coupling agent were investigated in this study. The low-temperature rheological properties of asphalt rubbers at different aging levels were tested using a dynamic shear rheometer (DSR). An interconversion between linear viscoelastic material functions was used to obtain converted evaluation indexes for the asphalt rubbers at low temperatures. Lastly, the physicochemical characteristics and the microscopic morphology of the asphalt rubbers were evaluated using Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM), respectively. In conclusion, the storage moduli of the asphalt rubbers containing heterogeneous crumb rubbers increased with the plasticized crumb rubber content and the aging level. The converted relaxation moduli were consistent with the change trend of the storage moduli, and the relaxation rate decreased as the plasticized crumb rubber content and the aging level increased. The process of mixing the base asphalt with crumb and plasticized crumb rubbers was physical blending, and the effect of aging on the absorption peak change of asphalt rubber with plasticized crumb rubbers was less than that of asphalt rubber with ordinary crumb rubbers. Aging deteriorated the blending between the crumb rubber and the base asphalt, and a distinct interface appeared between the crumb rubber and the base asphalt. The particle cores of the plasticized crumb rubber in the asphalt rubber were difficult to maintain. Furthermore, as the plasticized crumb rubber content increased, more fine particles stripped off the plasticized crumb rubber after aging.


2018 ◽  
Vol 91 (2) ◽  
pp. 453-468 ◽  
Author(s):  
Hong-Yuan Ren ◽  
Zheng Sun ◽  
Li-Qun Zhang ◽  
You-Ping Wu ◽  
Qiang Huang ◽  
...  

ABSTRACT Two silane coupling agents, bis-(γ-triethoxysilylpropyl)-tetrasulfide (Si69) and vinyltriethoxysilane (A151), were selected to investigate their effects on structure and properties of silica-filled methyl vinyl silicone rubber (VMQ)/emulsion styrene butadiene rubber (ESBR) composites. The filler–rubber interactions were investigated via bound rubber content and solid-state 1H low-field nuclear magnetic resonance (NMR) spectroscopy, and the mass ratio of VMQ and ESBR in the rubber–filler gel was investigated by thermogravimetric analysis (TGA). The results revealed that VMQ showed a better compatibility with silica than ESBR. Compared with the A151 composite, the composite with Si69 showed the higher content of ESBR in rubber–filler gel, which resulted in the higher bound rubber content and the weaker Payne effect, and it also exhibited higher tensile strength, higher tear strength, better wear resistance, and lower hardness. However, the presence of Si69 reduced the crosslink efficiency of ESBR and completely inhibited the crosslinking of VMQ, which caused the composite to show higher tan δ value at 60 °C than the A151 composite.


2016 ◽  
Vol 717 ◽  
pp. 3-8 ◽  
Author(s):  
Ji Wen Liu ◽  
Tao Zhuang ◽  
Guang Shui Yu ◽  
Shu Gao Zhao

The effects of rotor speed and discharging temperature on silica 1165MP-SSBR 5025-2 interaction as well as the mechanical properties and dynamic viscoelasticity are investigated in this work. The result shows that the discharging temperature increases linearly with increase of rotation speed, leading to increase of bound rubber content. The tensile strength, elongation at break and tear strength increase firstly, and then decrease with increase of rotation speed. However, the strength at 100% and 300% deformation decrease, and then they increase. The wet skid resistance of SSBR5025-2 filled with silica 1165MP improves with increase of rotation speed and discharging temperature, and the rolling resistance decreases.


2017 ◽  
Vol 90 (4) ◽  
pp. 651-666 ◽  
Author(s):  
C. Hayichelaeh ◽  
L. A. E. M. Reuvekamp ◽  
W. K. Dierkes ◽  
A. Blume ◽  
J. W. M. Noordermeer ◽  
...  

ABSTRACT Diphenyl guanidine (DPG) is the most commonly used secondary accelerator in silica-reinforced rubber compounds because of its additional positive effect on the silanization reaction and deactivation of free silanol groups that are left over after the silanization. However, because of health and safety concerns about the use of DPG, which decomposes to give highly toxic aniline during high processing temperature, safe alternatives are required. This work investigates the effect of various types of aliphatic amines having alkyl or cyclic structures and similar pKa (i.e., hexylamine [HEX], decylamine [DEC], octadecylamine [OCT], cyclohexylamine [CYC], dicyclohexylamine [DIC], and quinuclidine [QUI]) on the properties of silica-reinforced natural rubber (NR) compounds by taking the ones with DPG and without amine as references. When compared with the compound without amine, the use of all amine types reduces filler–filler interaction (i.e., the Payne effect) and enhances filler–rubber interaction, as indicated by bound rubber content and decreased heat capacity increment. The amines with alkyl chains can reduce the Payne effect and enhance cure rate to a greater extent compared with the amines with cyclic rings as a result of better accessibility toward the silica surface and a shielding effect because of less steric hindrance. The longer carbon tails on linear aliphatic amines ranging from HEX, DEC, to OCT lead to a lower Payne effect, lower heat capacity increment, higher bound rubber content, and higher modulus as well as tensile strength. Overall, the use of OCT provides silica-reinforced NR compounds with properties closest to the reference one with DPG and can act as a potential alternative for DPG.


2019 ◽  
pp. 000-000
Author(s):  
Qing-Yuan Han ◽  
Xu Li ◽  
Yu-Chun Li ◽  
You-Ping Wu

ABSTRACT The compatibility between solution polymerized styrene–butadiene rubber (SSBR 2466) and natural rubber (NR) is characterized by differential scanning calorimetry and dynamic mechanical thermal analysis. The single glass transition in the entire temperature range of all NR/SSBR blends and good correlation between Tg and SSBR fraction prove the excellent compatibility between SSBR 2466 and NR. With increasing SSBR content, a reduced Payne effect, more homogeneous dispersion of silica, stronger rubber–filler interaction, and more silica selectively distributed in the SSBR phase were determined via rubber-processing analysis, transmission electron microscopy, bound rubber, and thermogravimetric analysis, respectively. The high vinyl content, low styrene content, and end-functionalized structure of SSBR play vital roles in promoting its compatibility with NR and a stronger rubber–silica linkage. The resulting increased tan δ at 0 °C and low tan δ at 60 °C indicates good wet-skid resistance and low rolling resistance by blending SSBR 2466, and 70/30 NR/SSBR is the best balance for producing a “green tire” tread.


Sign in / Sign up

Export Citation Format

Share Document